Mysterious mazes in skin patterns: How animals got their complex colorations

Share
Pattern blending. Complex patterns can be formed by “pattern blending” between simple motifs via hybridization. Image: Seita Miyazawa

Why do zebras have stripes and leopards have spots?

Many biologists have tried to answer these questions and have developed interesting theories, including roles in either camouflage, thermoregulation, or to repel insects.

However, the answer to a seemingly simple question remains elusive: How did animals get these skin patterns?

Evolutionary mechanisms underlying the diversity of animal colorations, especially complex and elaborate ones, have been largely unexplored.

Now, in a new study published in the journal Science Advances, a researcher at Osaka University has shown that complex patterns on animals can evolve through a simple mechanism — pattern blending by hybridization.

Each animal lineage has a variety of color patterns.

So far, few studies have examined their diversity across the whole range of a lineage. Thus, information was limited about what kind of pattern motifs exist and how many species have them.

This was one of the reasons for the difficulty in understanding how animal color patterns have evolved.

In this vein, Dr Seita Miyazawa conducted a pattern analysis on an unprecedented scale of more than 18,000 fish species to investigate the relationships among pattern motifs.

By looking at which species with which particular motifs are closely related, Miyazawa found an unexpectedly strong association between intricate maze-like patterns and simple spot patterns.

“This seems counterintuitive because these patterns are very different in appearance,” says Miyazawa, “but it is strikingly consistent with the prediction derived from a mathematical model.”

Pattern blending in model simulation and actual animals. Photos: H. Senou, the Kanagawa Prefectural Museum of Natural History; The Kagoshima University Museum; K. Matsuura; and S. Miyazawa

Previously, by using a mathematical model, Miyazawa and his colleagues had presented a hypothesis on animal color pattern formation. They showed that the blending of two simple spot patterns by hybridization resulted in a complex maze-like pattern.

What is predicted from this is the possibility that animals with “maze patterns” have arisen from the blending of patterns by hybridization between species with two different spot patterns.

He tested this pattern blending hypothesis by analyzing the patterns and genomes of a representative fish group, pufferfishes of the genus Arothron.

“I found that several fish species with maze patterns have actually been derived from hybridization between light- and dark-spotted species,” Miyazawa said. “Although expected, this was amazing.”

Further analysis suggested that similar pattern blending events may have occurred in many other fish groups.

“This indicates that the pattern blending mechanism may be extensively involved in the enrichment of color pattern diversity,” says Miyazawa, “possibly in other animal groups as well.”

In recent years, many findings have been reported that indicate hybridization has been involved in the evolutionary process in many animal species, including modern humans.

“Pattern blending may also have contributed to biodiversity as one of the driving forces that hybridization can bring to animal evolution.”

Pattern blending enriches the diversity of animal colorations. Seita Miyazawa. Science Advances, 02 Dec 2020, Vol. 6, no. 49, eabb9107 DOI: 10.1126/sciadv.abb9107

The study, published under a Creative Commons License, can be read here

Leave a Reply

Your email address will not be published. Required fields are marked *