New device detects head injuries “on the spot”

British scientists have developed a new method of detecting traumatic brain injury which targets chemical biomarkers released by the brain immediately after a head injury occurs.
A new device to detect Traumatic Brain Injury “on the spot” has been developed by researchers at the University of Birmingham. © Gavin MacLeod

British scientists have developed a new method of detecting traumatic brain injury which targets chemical biomarkers released by the brain immediately after a head injury occurs.

It means that patients who need urgent medical attention can be identified quickly, saving time in delivering vital treatment and avoiding patients undergoing unnecessary tests when no injury has occurred.

The method developed by scientists at the University of Birmingham works using a spectroscopic technique called surface-enhanced Raman scattering, in which a beam of light is ‘fired’ at the biomarker. The biomarker, taken from a pinprick blood sample, is prepared by being inserted into a special optofluidic chip, where the blood plasma is separated and flows over a highly specialised surface. The light causes the biomarker to vibrate or rotate and this movement can be measured, giving an accurate indication of the level of injury that has occurred.

The technique was developed by multi-disciplinary team of researchers in the group of Advanced Nanomaterials, Structures and Applications (ANMSA) led by Dr Pola Goldberg Oppenheimer at the University of Birmingham.

Researchers are now identifying commercialisation routes for the technique.

To produce the level of accuracy required, the test needs to be extremely sensitive, rapid and specific. The key to sensitivity is in the way the biomarkers interact with the surface. The team developed a low-cost platform, made from polymer and covered with a thin film of gold. This structure is then subjected to a strong electric field, which redistributes the film into a distinctive pattern, optimised to resonate in exactly the right way with the light beam.

“This is a relatively straightforward and quick technique that offers a low-cost, but highly accurate way of assessing traumatic brain injury which up until now has not been possible,” Oppenheimer said.

According to the charity Headway, around 1 million people each year will visit A&E in Britain following a head injury. Current methods of assessing TBI frequently rely on the Glasgow Coma Scale, in which clinicians make a subjective judgment based on the patient’s ability to open their eyes, their verbal responses and their ability to move in response to an instruction.

“The current tools we use to diagnose TBI are really quite old fashioned, and rely on the subjective judgment of the paramedic or the emergency doctors,” Oppenheimer said. “There’s an urgent need for new technology in this area to enable us to offer the right treatment for the patient, and also to avoid expensive and time-consuming tests for patients where there is no TBI.”

Research demonstrating the technique was published in the journal Nature Biomedical Engineering. In the study, 48 patients were assessed using the engineered device, with 139 samples taken from patients with TBI and 82 from a control group. The study showed that in the TBI group, the levels of the biomarker were around 5 times higher than in samples taken from the control group. The team also found the levels tailed off rapidly around one hour after the injury occurred, further highlighting the need for rapid detection.

The next stage for this research will be to miniaturise the device technology used to analyse the samples, so that it could be easily stored on board an ambulance for use by paramedics, used at sporting events where head injuries can be hard to detect, at local GP services or in hospitals where it could be used over time to monitor patients to see how the head injury is progressing. The team is working towards optimising and trailing a prototype technology on a larger patient cohort.

Pola Goldberg Oppenheimer, Jonathan J. S. Rickard, Valentina Di-Pietro, David J. Smith, David J. Davies, and Antonio Belli (2020). Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy. Nature Biomedical Engineering.Nat Biomed Eng 4, 610–623 (2020).


• Receive a notification when a new article is posted:

Latest research and information from the horse world.

Leave a Reply

Your email address will not be published. Required fields are marked *