On the move: Horses can’t defy the laws of physics

Physics is the only science; all else is stamp collecting.(Ernest Rutherford)

The statement is a little absolute and arrogant but it underlines an important point. There is always a fundamental problem engendering secondary issues. Focusing on the secondary issue does not resolve the fundamental problem.

Riding techniques as well as therapies concentrate on secondary issues instead of identifying and correcting the root cause, which is the fundamental problem. For instance, rushing a horse forward is not going to create forward movement. In respect of equine biomechanics, forward movement is not how much the body moves forward but instead, how well the thrust generated by the hind legs is efficiently converted forward through the spine, into horizontal forces, forward movement, and vertical forces, balance control. The idea that urging the horse forward is going to create forward movement is at the level of stamp collecting.

A concept as simple as the horse’s natural frequency raises pertinent questions.

Our entire biological system – the brain and the earth itself work -on the same frequencies.” (Nikola Telsa)

Back muscles create speed, stiffening the thoracolumbar spine. Rushing the horse at a cadence exceeding the horse’s natural frequency, stiffens the back muscles, altering their precise orchestration and therefore, forwardness and balance control. Down at a microscopic level, the horse’s frequency is a fundamental component of efficiency and soundness.

"Dressage is an education, not a crucifixion." _ Jean Luc Cornille
“Dressage is an education, not a crucifixion.” _ Jean Luc Cornille

Because the muscle is composed of both muscle fibers and tendinous materials, all of these structures must be collectively ‘tuned’ to the spring properties for the muscle-tendon system to store and recover elastic strain energy during locomotion.” (Paul C. LaStayo, PT, PhD. John M. Woolf, PT, MS, ATC. Michael D. Lewek, PT. Lynn Snyde-Mackler, PT, ScD. Trugo Relch, BS. Stan L. Lindstedt, PhD. Eccentric Muscle Contractions: Their contribution to injury, prevention, rehabilitation, and sport. Journal of Orthopaedic & sports physical therapy. 557-571. Volume 33, NUMBER 10, October 2003)

 

Injecting the hocks provides transient relief but does not correct the kinematic abnormality stressing the hock in the first place. Repeated injections are not harmless; over a period of time, Hyaluronic acid and synovial fluid undergoes a chemical transformation altering the efficiency of the synovial fluid. For decades, the general consensus has been that hock problems were the root cause of back issues. Further understanding of the whole mechanism suggested that at the contrary, thoracolumbar dysfunction is the root cause of hock problems. By correcting the thoracolumbar dysfunction, it is possible to correct the kinematics abnormality that puts excessive stress on the hock. In fact, the kinematics abnormality causing hack damage will never be corrected without identifying and correcting the thoracolumbar dysfunction that is the source of the problem. The work has to be done in correlation with proper hoof balance, as there are always two set of forces involved, the forces going up from the hoof onto the legs and the forces going down from the back onto the hoof.

Identifying the fundamental problem evolves with the advance of scientific knowledge. Quite often, what appeared as fundamental years ago, is secondary in the light of new knowledge. Inverted dynamics, for instance, was a progress allowing the understanding of equine gaits and performance at a deeper level than kinematics analysis. Forward dynamics is the measurement of movement through the production of force. Inverted dynamics is a mathematical calculation allowing us to measure force from the amplitude of movement. Inverted dynamics permitted the identification of phenomenon that were not observed through kinematics analysis even when coupled with plate form measurements.

For instance, inverted dynamics demonstrated that “A visually identical hind limb extension in late stance may be accomplished by only hip extensor muscles, only knee extensor muscles or any combination of these.” (Liduin S. Meershoek and Anton J. van den Bogert. Mechanical Analysis of Locomotion.)

The knowledge is directly applied in the science of motion, when we explain that efficiency in locomotion demands deep involvement of the horse’s mental processing. It is not about stimulating muscles that create movements. It is instead about guiding the horse’s brain toward the most efficient coordination of the muscular system. The horse’s brain processes the most efficient coordination of the physique as long as the education is encouraging the horse’s brain to explore efficiency, which is more movement for less muscular work. The horse is designed to reduce the metabolic cost of locomotion and, when encouraged to do so, the horse intrinsically as well as rationally looks for the most efficient way to use his physique.

In terms of the practical application for therapy inverted dynamics calculations open new perspectives. The study “Mechanical Analysis of Locomotion” (2003, Liduin S, Meershoek and Anton J. van den Bogert) talks about stifle extension but the principle applies to many other muscles and movements. Even if one muscle is injured, the horse can function using other muscles and can be encouraged to do so. The rider’s knowledge is necessary as the horse will initially elect to protect a damaged muscle and quite often needs to be guided toward using another muscle. This can be done through the science of motion.

The separate analysis of either movements or forces, kinematics or kinetics respectively, can enhance our understanding of equine gaits. However, an even more powerful method is to analyze movements and forces simultaneously using Newton’s laws of dynamics.” (Anton van den Bogert et al, Mechanical Analysis of Locomotion).

Models are often used in research, but even at this advanced level of research, yesterday’s fundamentals look like stamp collecting in respect of today’s fundamentals.

These more sophisticated dynamic optimization models, as opposed to static optimizations that do not consider muscle properties, have not been used other than in research, presumably because more complicated calculations are required. However, they will result in more realistic estimates of muscle force.” (Mechanical Analysis of Locomotion)

The practical application questions every dressage formula. One can believe in driving the horse onto the bit, long and low, as long as one does not consider the properties of the muscles.

The discovery of how things work is intrinsically rewarding, and developing the practical applications of discoveries is no less so.” (Thomas W. Clark)

The development of greater knowledge, better tools, new findings demand refinements, changes, or even discarding previously held theories and concepts.

The result is excitement and exhilaration in open inquiry.” (Gerald Larue)

There is an infinite pleasure in further understanding how the horse’s physique and mind effectively function. The initial move is not very difficult. It is about regarding progress as an opportunity to better ride and train and teach, instead of a challenge to one’s ego.

scienceofmotion.com

Jean Luc’s Inhand Therapy Course

Jean Luc Cornille

Jean Luc Cornille M.A.(M.Phil) has gained worldwide recognition by applying practical science to the training of the equine athlete. Influenced by his background as a gymnast, Jean Luc deeply understands how equine training can be enhanced by contemporary scientific research. A unique combination of riding skill, training experience and extensive knowledge of the equine physiology enables Jean Luc to "translate" scientific insights into a language comprehensible to both horse and rider. This approach has been the trademark of his training. - read more about Jean Luc

Leave a Reply

Your email address will not be published. Required fields are marked *

Send this to a friend